jueves, 10 de mayo de 2012

UNIDAD VI TRANSCRIPCION GENETICA

     UNIDAD VI TRANSCRIPCION GENETICA
       6.1 ORGANISMOS PROCARIOTES

Los organismos procarioticas son aquellas  células sin núcleo celular diferenciado, es decir, cuyo ADN se encuentra disperso en el citoplasma.  El metabolismo de los procariotas es enormemente variado, a diferencia de los eucariotas, y muchos resisten condiciones ambientales sorprendentes por lo extremas en parámetros como la temperatura o la acidez.

 
                          Diversidad bioquímica y metabólica 
Desde su aparición, han sufrido una gran diversificación. El metabolismo de las procariotas es enormemente variado (a diferencia de las eucariotas), y causa que algunas procariotas sean muy diferentes a otras. Algunas son muy resistentes a condiciones ambientales extremas como temperatura o acidez, se las llama Extremófilos.
La totalidad de la diversidad de los sistemas metabólicos, es abarcada por los procariontes, por lo que la diversidad metabólica de los eucariontes se considera como un subconjunto de las primeras.

                                                   6.1.1 ETAPAS DE SINTESIS DEL ARN 
INICIACION:

La iniciacion se da con una enzima que se llama ARN polimerasa. Lo primero que hace la polimerasa es localizar dentro de la cadena de ADN el inicio del gen que va a sintetizar, una vez que lo encuentra se une a ese sitio, ya unida, cambia de forma de manera que forza a la cadena doble de ADN a que se abra en ese punto especifico.
Una vez que ya logro separar las dos cadenas del ADN y dejo al descubierto las bases nitrogenadas, la polimerasa se va moviendo por una de las dos cadenas y al tiempo q se mueve va sintetizando las bases complementarias a las de la cadena de adn por la q se va moviendo.
  Volviendo al ARN..                    
Este proceso que hace la polimeraza, de sintetizar la nueva cadena es el proceso de 'elongacion del ARN'
c) La terminación ocurre cuando la ARN polimerasa llega a una señal o secuencia especifica de ADN que indica que ahi termina ese gen. Cuando la polimerasa llega a ese lugar, ocurren dos cosas, lo primero es que la cadena de ARN que se formo, se separa tanto del ADN como de la ARN polimerasa y continua su viaje al ribosoma para la sintesis de proteinas, la segunda cosa que sucede es que el ARN polimerasa se separa tambien de la cadena de ADN y con eso termina la transcripcion .

 ELONGACION

En el siguiente paso, la holoenzima ADN Pol III cataliza la síntesis de las nuevas cadenas añadiendo nucleótidos sobre el molde. Esta síntesis se da bidireccionalmente desde cada origen, con dos horquillas de replicación que avanzan en sentido opuesto. Cuando el avance de dos horquillas adyacentes las lleva a encontrarse, es decir, cuando dos burbujas se tocan, se fusionan, y cuando todas se han fusionado todo el cromosoma ha quedado replicado.
Puesto que la holoenzima ADN Pol III necesita de un extremo 3'-OH libre, es necesario que una ARN primasa catalice la formación de un fragmento corto específico de ARN llamado cebador, que determinará el punto por donde la ADN polimerasa comienza a añadir nucleótidos. Así, durante la síntesis, en cada horquilla de replicación se van formando dos copias nuevas a partir del cebador sintetizado en cada una de las dos hebras de ADN que se separaron en la fase de iniciación, pero debido a la unidireccionalidad de la actividad polimerasa de la ADN Pol III, que sólo es capaz de sintetizar en sentido 5´ → 3', la replicación sólo puede ser continua en la hebra adelantada; en la hebra rezagada es discontinua, dando lugar a los fragmentos de Okazaki.
La mitad del dímero de la holoenzima ADN Pol III sintetiza la hebra adelantada y la otra mitad la hebra rezagada.3 La elongacion de la hebra rezagada ocurre por medio del modelo del trombón.

En la hebra rezagada, cuando la ADN Pol III hace contacto con el extremo de otro fragmento de Okazaki contiguo, el cebador de ARN de éste es eliminado y los dos fragmentos de Okazaki de ADN recién sintetizado son unidos. Una vez se han juntado todos se completa la doble hélice de ADN. La eliminación de cebadores también se da en la hebra conductora, de síntesis continua, pero debido a que en ésta hay un solo cebador es un proceso que sólo tiene lugar una vez, mientras que en la hebra rezagada se dará tantas veces como fragmentos de Okazaki haya.
En la eliminación del fragmento de Okazaki (también denominado iniciador, cebador o primer) intervienen dos de enzimas: por un lado la ADN Pol I, que va eliminando el ARN con su actividad exonucleasa 5' → 3' y simultáneamente rellenando con ADN mediante su actividad polimerasa 5' → 3' (proceso denominado nick-traslation). Al final queda rotura (o "mella") entre el extremo 3'-OH libre y el fosfato 5' de la cadena sintetizada; por último, la ADN ligasa sella esa rotura catalizando la reacción de condensación entre el grupo fosfato y el OH de la desoxirribosa del nucleótido contiguo, completando el enlace fosfodiéster; para ello, es preciso hidrolizar una molécula de ATP.

  TERMINACION
 Terminación de los genomas lineales

El final de la replicación se produce cuando la ADN polimerasa III se encuentra con una secuencia de terminación. Se produce entonces el desacople de todo el replisoma y la finalización de la replicación.

                        6.2 OEGANISMOS EUCARIOTICOS

Se denomina eucariotas a todas las células que tienen su material hereditario fundamental (su información genética) encerrado dentro de una doble membrana, la envoltura nuclear, que delimita un núcleo celular. Igualmente estas células vienen a ser microscópicas pero de tamaño grande y variado comparado con las otras células. La alternativa a la organización eucariótica de la célula la ofrece la llamada célula procariota. En estas células el material hereditario se encuentra dentro de diferentes compartimientos llamados orgánulos, en el seno del citoplasma. Las células eucariotas no cuentan con un compartimiento alrededor de la membrana plasmática (periplasma), como el que tienen las células procariotas.
A los organismos formados por células eucariotas se les denomina
eucariontes.El paso de procariotas a eucariotas significó el gran salto en complejidad de la vida y uno de los más importantes de su evolución. Sin este paso, sin la complejidad que adquirieron las células eucariotas no habrían sido posibles ulteriores pasos como la aparición de los pluricelulares. La vida, probablemente, se habría limitado a constituirse en un conglomerado de bacterias. De hecho, los cuatro reinos restantes procedemos de ese salto cualitativo. El éxito de estas células eucariotas posibilitó las posteriores radiaciones adaptativas de la vida que han desembocado en la gran variedad de especies que existe en la actualidad.


ORGANIZACION

Las células eucariotas presentan un citoplasma muy compartimentado, con orgánulos (membranosos) separados o interconectados, limitados por membranas biológicas que son de la misma naturaleza esencial que la membrana plasmática. El núcleo es solamente el más notable y característico de los compartimentos en que se divide el protoplasma, es decir, la parte activa de la célula. En el protoplasma distinguimos tres componentes principales, a saber, la membrana plasmática, el núcleo y el citoplasma, constituido por todo lo demás. Las células eucariotas están dotadas en su citoplasma de un citoesqueleto complejo, muy estructurado y dinámico, formado por microtúbulos y diversos filamentos proteicos. Además puede haber pared celular, que es lo típico de plantas, hongos y protistas pluricelulares, o algún otro tipo de recubrimiento externo al protoplasma.
 6.6.2 MODIFICASIONES TRANSCRPCIONALES DEL RNA MENSAJERO

Los productos inmediatos de la transcripción se denominan transcritos primarios y no son necesariamente funcionales; muchos de ellos son específicamente alterados en varias formas como son:

  1. Remover segmentos exo o endonucleotidicos.
  2. Adición de secuencias nucleotidicas en cualquiera de los dos extremos (5´ ó 3´).
  3. Modificación de nucleótidos específicos.

Estas modificaciones no son iguales para todos los tipos de ARN, cada uno tien sus propias particularidades:
  
En los procariontes, la mayoría de los transcritos primarios son funcionales inmediatamente después, e incluso durante su síntesis. Es decir estos mARN participan en la traducción, sin modificación alguna. De hecho, en estos organismos, los ribosomas usualmente comienzan la traducción en la cadena naciente del mensajero.

En los eucariontes por el contario,  el mARN es producido en el núcleo y su traducción ocurre en el citoplasma. En el nucleoplasma, durante el camino al citoplasma, los mARN sufren alteraciones en su estructura. A estos cambios se les denomina modificaciones postranscripcionales.

                                    BIBLIOGRAFIA
 
http://www.whfreeman.com/thelifewire6e/con_index.htm?12
http://www.wiley.com/legacy/college/boyer/0470003790/animations/animations.htm Síntesis de proteínas.

No hay comentarios:

Publicar un comentario