lunes, 27 de febrero de 2012

UNIDAD III ORGANIZACION DEL MATERIAL GENETICO


INSTITUTO TECNOLOGICO DE CIUDAD ALTAMIRANO

"BIOLOGIA MOLECULAR"

ALUMNA
MARICRUZ HERRERA MAYA

PROFESOR
FRANCISCO JAVIER PUCHE ACOSTA

UNIDAD III

ORGANIZACION DEL MATERIAL GENETICO


SEMESTRE: VI  CARRERA: LIC BIOLOGIA  GRUPO: A

                            3.1 ORGANISMOS PROCARIOTICOS
·         *Células u organismos más primitivos
·         *No tienen pared nuclear, por lo q su material genético se encuentra disperso por el citoplasma.
·         *Su núcleo es primitivo, pues carece de membrana nuclear. La información genética se almacena en moléculas de ADN que tienen forma circular (no en doble hélice como en las eucariotas). Dichas moléculas se ubican, en algunas bacterias, en la llamada zona nuclear.
·         *En lugar de tener organelos, como cloroplastos y mitocondrias, encargados de las funciones energéticas, presentan los llamados cuerpos membranosos, que se forman de invaginaciones de la membrana plasmática; y cumplen funciones de respiración y fotosíntesis.
·         *La transmisión del material genético no se cumple por mitosis, sino mediante división directa. No se forma entonces el aparato miótico.
·         *La pared celular tiene estructura y composición química particulares. En ellas predominan un glucopíptedo llamado mureína.
·         *El volumen de las células procariotas es menor pues oscila entre 1 y 2 micrómetros. Las células eucariotas presentan tamaño mayor: de 10 a 100 micrómetros.
·         *La división celular en procariotas es por fisión binaria gemación, no hay mitosis. En eucariotas sí hay diversas formas asociadas con mitosis.
·         *Sistema sexual, cuando está presente en procariotas, hay transferencia unidireccional de genes desde el dador al receptor. En las eucariotas hay fusión nuclear completa de genomas gaméticos equivalentes, asociados con la meiosis.
·         *Organelos de movimiento: en procariotas son flagelos simples; en eucariotas cilias o flagelos complejos, cuando están presentes.

 3.1.1 ADN CIRCULAR
El ADN Circular es un producto normal de la reordenación entre los segmentos del gen que codifica las regiones variables de las cadenas ligeras y pesadas de las Inmunoglobulinas.
El ADN circular puede encontrarse en forma relajada o en forma superenrollada. En la forma relajada, el círculo se halla desplegado sobre un único plano; en la forma superenrollada el contorno del círculo va girando sobre sí mismo de manera tal que adquiere profundidad

Cualquiera de las moléculas de ADN covalentemente cerradas que se encuentran en bacterias, muchos virus, mitocondrias, plástidos, y plásmidos. También se han observado ADNs pequeños, circulares y polidispersos en un número de organismos eucarióticos y se ha sugerido que tienen homología con el ADN cromosómico y en la capacidad de insertarse en él, y escindirse del ADN cromosómico. Es un fragmento de ADN formado por un proceso de formación y de deleción de un asa , que contiene una región constante de la cadena pesada mu y la parte 3 de la región de cambio mu. El adn circular es un producto normal de la reordenación entre los segmentos del gen que codifica las regiones variables de las cadenas ligeras y pesadas de las inmunoglobulinas, así como de los receptores de las células T.

3.1.2 PROTEINAS ASOCIADAS
Las proteínas asociadas al ADN son las denominadas histonas. Son polipéptidos relativamente cortos cargados positivamente (básicos) y por lo tanto atraídos por cargas negativas del ADN (ácido). Son sintetizadas durante la fase S de síntesis del ciclo celular. Una de las funciones de esas proteínas está relacionada con el empaquetamiento del ADN en la forma del cromosoma: los 2 metros de ADN de la célula humana son empaquetados en 46 cromosomas de un largo combinado de aproximadamente 200 nm. La célula tiene unas 90 millones de moléculas de histonas siendo la mayoría perteneciente a un tipo conocido como H1. Se conocen cinco tipos de las siguientes histonas (H1, H2A, H2B, H3, y H4 , 8 moléculas en total); con la excepción de la H1 la mayor parte de las histonas de los eucariotas son muy similares.

        3.1.3 ADN EXTRACROSOMICO
ADN extracromosómico: elemento facultativo (plásmidos, bacteriófagos atemperados, etc.)
Libres o unidos al cromosoma (episomas)
Propiedades importantes pero no esenciales para la vida bacteriana
Replicación independiente del núcleo
Transferencia a otras células o herencia a células hijas
Contienen información para su replicación y proteínas reguladoras.
Adquisición por conjugación, transducción y posibilidad de perderlos (curación

ADN EXTRACROMOSÓMICO.
PLÁSMIDOS
 TIPOS:
Conjugativos. Factor F (HFR)
Factores de resistencia a antimicrobianos.
Conjugativos (genes r y Hfr) y no conjugativos.
Plásmidos de virulencia
Plásmidos productores de antimicrobianos
Otros plásmidos
ADN EXTRACROMOSÓMICO.
TRANSPOSONES

Segmentos de ADN que pueden trasladarse
Facultativo.
DNA no autónomo (integrado en cromosoma, plásmido u otro genoma)
Móvil
Genes para la propia transposición
Secuencias de inserción en sus extremos.
 
3.1.3.1 PLÁSMIDOS
Son moléculas de ADN extracromosómico circular o lineal que se replican y transcriben independientes del ADN cromosómico. Están presentes normalmente en bacterias, y en algunas ocasiones en organismos eucariotas como las levaduras. Su tamaño varía desde 1 a 250 kb. El número de plásmidos puede variar, dependiendo de su tipo, desde una sola copia hasta algunos cientos por célula. El término plásmido fue presentado por primera vez por el biólogo molecular norteamericano Joshua Lederberg en 1952.1
Las moléculas de ADN plasmídico, adoptan una conformación tipo doble hélice al igual que el ADN de los cromosomas, aunque, por definición, se encuentran fuera de los mismos. Se han encontrado plásmidos en casi todas las bacterias. A diferencia del ADN cromosomal, los plásmidos no tienen proteínas asociadas.
En general, no contienen información esencial, sino que confieren ventajas al hospedador en condiciones de crecimiento determinadas. El ejemplo más común es el de los plásmidos que contienen genes de resistencia a un determinado antibiótico, de manera que el plásmido únicamente supondrá una ventaja en presencia de ese antibiótico.
Hay algunos plásmidos integrativos, es decir, que tienen la capacidad de insertarse en el cromosoma bacteriano. Estos rompen momentáneamente el cromosoma y se sitúan en su interior, con lo cual, automáticamente la maquinaria celular también reproduce el plásmido. Cuando ese plásmido se ha insertado se les da el nombre de episoma.
Los plásmidos se utilizan en ingeniería genética por su capacidad de reproducirse de manera independiente del ADN cromosomal así como también porque es relativamente fácil manipularlos e insertar nuevas secuencias genéticas.
Los plásmidos usados en Ingeniería Genética suelen contener uno o dos genes que les confieren resistencia a antibióticos y permiten seleccionar clones recombinantes. Hay otros métodos de selección además de la resistencia a antibióticos, como los basados en fluorescencia o en proteínas que destruyen las células sin uso de antibióticos. Estos nuevos métodos de selección de plásmidos son de uso frecuente en agrobiotecnología, debido a la fuerte crítica de grupos ecologistas contra la posibilidad de presencia de antibióticos en los organismos modificados genéticamente.

3.1.3.2 BACTERIOFAGOS

 Los bacteriófagos son virus que contienen ADN o ARN como material genético, infectan específicamente células bacterianas y se reproducen provocando lisis de la célula infectada. Debido a estas características se han utilizado como agentes terapéuticos para controlar las infecciones bacterianas en camaronicultura donde las bacterias patógenas provocan perdidas drásticas en producción. Sin embargo, algunos fagos tienen un ciclo de replicación distinto al lítico, en el cual el genoma del fago se integra al genoma bacteriano y se replica junto con la bacteria sin provocar lisis (ciclo lisogénico), y algunas veces durante esta integración se inducen cambios indeseables en las bacterias que le confieren un incremento en la virulencia, como ha sido demostrado para muchas bacterias.

El ciclo de replicación de un bacteriófago T4 se puede dividir esquemáticamente en distintas etapas, las que son comunes a otros virus bacterianos y eucarióticos.
1.      Adsorción
2.      Inyección del material genético viral
3.      Replicación del material genético viral
4.      Síntesis de las envolturas proteicas
5.      Empaquetamiento del DNA dentro de la envoltura proteica y ensamblaje de la envoltura
6.      Lisis y liberación de las partículas viral
Adsorción: El virus se fija o adsorbe a componentes de la superficie celular que actúan como receptores específicos. La zona de adsorción del virus es complementaria al receptor celular, por lo tanto un determinado virus sólo puede infectar un número limitado de cepas celulares que contengan a un determinado receptor. La naturaleza de la zona de adsorción varía con el tipo de fago. En el T4 se localiza en el extremo de la cola, en donde se encuentran la placa basal, las espículas y las fibras de la cola.
 
Inyección del material genético viral: Después de la adsorción, se produce un cambio configuracional en las proteínas de la placa basal, alguna de las cuales tienen actividad enzimática y producen un poro en la membrana citoplasmática de la célula. La vaina del fago se contrae y el material genético viral ingresa en la célula, mientras que la envoltura proteica queda en el exterior.
 
Replicación del material genético viral: El material genético viral que ingresa en una célula contiene bases modificadas que evitan la degradación por nucleasas bacterianas. Esta modificación consiste en la glicosilación y/o metilación de algunas determinadas bases. En el caso del fago T4 se glucosila la base 5'-hidroximetilcitosina. Para lograr una efectiva replicación del genoma viral se deben sintetizar algunas proteínas ni bien el material genético ingresa en la célula. Esta proteínas tempranas reparan el poro de la membrana citoplasmática por donde ingresó el genoma viral, degradan el DNA bacteriano lo que proporciona una fuente de precursores, evita la síntesis de RNA y proteínas bacterianas, y proporciona ribosomas para la síntesis de proteínas del fago. Además algunas de estas proteínas tempranas participan en la síntesis de las bases inusuales. La forma de replicación del genoma viral es dependiente del tipo de material genético (si es RNA o DNA, si es simple o doble cadena). En el caso del fago T4, las moléculas replicadas se aparean en los extremos y formando una molécula de DNA más larga denominada concatámero. Después una enzima corta esta larga molécula lineal en moléculas más pequeñas de igual longitud. Las moléculas de DNA del T4 tienen se caracterizan por estar permutadas circularmente (el DNA del T4 es lineal) de esta forma todas las moléculas de DNA resultantes contienen genes completos y funcionales. La enzima del T4 que corta al concatámero produce moléculas de DNA de tamaños similares pero no reconoce sitios específicos sobre la molécula, en cambio la enzima del T7 reconoce sitios específicos sobre el DNA.
Síntesis de las envolturas proteicas: Las proteínas de la envoltura (cápside, vaina, fibras, etc) son proteínas tardías que se sintetizan después de iniciada la replicación del material genético. La síntesis de cada componente proteico se realiza separadamente. En el caso del fago T4, el material genético es encapsidado antes del ensamble del resto de los componentes.
Ensamble: Todas las proteínas de la envoltura se ensamblan para formar una partícula viral madura capaz de infectar a otra célula cuando sea liberada.
Lisis celular y liberación de las partículas virales: La lisis celular se debe a la síntesis de proteínas tardías codificadas en el genoma del fago. En el fago T4, estas proteínas son enzimas que lesionan la membrana citoplasmática y la pared celular.

 Lisogenia
Poco tiempo después de que fueron descubiertos los fagos, se aislaron cepas bacterianas que parecían ser portadoras silenciosas de ciertos tipos de fagos. Los líquidos obtenidos a partir de cultivos de estas cepas portadoras mostraban la presencia de fagos; sin embargo, las cepas portadoras no eran sensibles a ser destruidas por el fago que portaban. Por otra parte, cepas de bacterias emparentadas con la cepa portadora resultaban ser sensibles al fago presente en las cepas portadoras. Las cepas de bacterias portadoras de fagos silenciosos o latentes fueron denominadas cepas lisogénicas. A principios de los años cincuenta se descubrió que los fagos son capaces de adsorberse a las bacterias lisogénicas, pero no se produce la subsecuente lisis de estas bacterias. Por otra parte, cuando el fago procedente de una cepa lisogénica es sembrado en una cepa de bacterias sensibles, se pueden aislar en estos cultivos colonias de bacterias que se comportan igual que las cepas lisogénicas. En 1950, André Lwoff cultivó una sola célula procedente de una cepa lisogénica de Bacillus megaterium y observó bajo el microscopio la división de esta bacteria. Posteriormente, Lwoff removió una de las células hijas junto con un poco del medio de cultivo. Este proceso fue repetido varias veces: cada vez que se dividía la célula remanente, era removida una de las células hijas y algo del medio de cultivo; las células hijas y el viejo medio de cultivo fueron sembrados en agar para determinar si daban origen a una población de bacterias lisogénicas y a la presencia de fago en el medio de cultivo. Estos experimentos mostraron que las bacterias lisogénicas pueden crecer y dividirse sin liberar fagos al medio de cultivo. Sin embargo, por alguna razón desconocida, algunos filtrados obtenidos a partir de extractos de bacterias lisogénicas mostraban la presencia de partículas virales, o sea, fagos. Lwoff razonó que en las cepas lisogénicas el fago se encuentra en forma de un precursor no infeccioso al que denominó profago. La lisis de algunas de estas bacterias lisogénicas ocurre solamente cuando estas células han sido estimuladas para producir fagos. Lwoff y colaboradores observaron que la irradiación con luz ultravioleta (U.V.) era capaz de inducir la producción de fagos en una población de bacterias lisogénicas, mismas que eran lisadas en la medida que se incrementaba la concentración de fagos liberados al medio de cultivo. Por lo tanto, una bacteria lisogénica posee la capacidad de heredar el fago a sus descendientes, muy pocos de los cuales se lisarán en forma espontánea. Sin embargo, la mayor parte de la progenie de una bacteria lisogénica puede ser inducida a producir el fago por medio de la irradiación con U.V. o tratamiento con otros factores inductores. Se denomina temperados a los bacteriófagos capaces de existir en forma de profago en el interior de una bacteria hospedera. Después de que el profago ha sido inducido por irradiación, ocurre un breve periodo de eclipse en el cual no se puede detectar la presencia del fago dentro de la bacteria. Sin embargo, es posible detectar la aparición de proteínas y ácido nucleico específicos del fago; estos elementos serán ensamblados para formar los nuevos fagos maduros poco antes de que ocurra la lisis de la bacteria hospedera.
En 1951, Esther Lederberg descubrió en forma accidental que la cepa de E. coli K12 era de tipo lisogénico. El fago latente en dicha cepa fue aislado al mezclar E. coli Kl2 con derivados no lisogénicos de esta cepa bacteriana. El fago resultante es ahora conocido como fago y representa el caso más estudiado del fenómeno de lisogenia.
Las bacterias infectadas por fagos temperados continúan dividiéndose por varias generaciones y son inmunes o resistentes a ser superinfectadas por el mismo tipo de fago que albergan o por otros fagos pertenecientes a clases emparentadas con el fago temperado original. Estas bacterias contienen cuando menos una copia íntegra del genoma del fago. Las bacterias infectadas por fagos temperados portan la información genética correspondiente al fago, a través de múltiples divisiones bacterianas, o sea, el genoma del fago es replicado al mismo tiempo que ocurre la replicación del genoma bacteriano; este hecho hace posible que la bacteria original pueda heredar el fago temperado a la subsecuente progenie bacteriana.
Transducción
La transducción fue cronológicamente el último sistema de transferencia genética bacteriana que se descubrió.
En 1951 Joshua Lederberg y su colaborador Zinder estaban investigando en Salmonella la posible existencia de un sistema de conjugación al estilo del que se acababa de descubrir en su pariente Escherichia coli). Mezclaron dos cepas de Salmonella, cada una con un juego distinto de marcadores genéticos. (Eureka! Obtuvieron recombinantes. Descartaron que se tratara de transformación, ya que los resultados eran similares si añadían DNasa al sistema. Entonces, ¿era un fenómeno de conjugación? Realizaron el experimento del tubo en "U", con una membrana separando los dos brazos de la U, en cada uno de los cuales se colocaba una de las cepas. La membrana impide el paso de bacterias y los contactos intercelulares directos entre las dos cepas. Pues bien... seguía habiendo recombinantes. Esto descartaba, pues, que se tratara de conjugación. Se postuló que debía de existir un "agente filtrable" resistente a las nucleasas, responsable último de la transferencia genética.
La transducción se puede definir como el proceso de transferencia genética desde una célula donadora a otra receptora mediatizado por partículas de bacteriófagos que contienen ADN genómico de la primera. En la transducción podemos distinguir dos etapas diferenciadas:
1.      Formación de la partícula fágica transductora: un trozo de material genético de la célula donadora se introduce en el interior de la cabeza de la cápsida de un fago. Las partículas transductoras son en cierta manera "subproductos" anómalos del ciclo normal del fago.
2.      La partícula transductora inyecta de forma habitual el ADN que porta a la célula receptora, donde este ADN puede eventualmente recombinarse y expresar su información.
La transducción descubierta por Lederberg y Zinder se llama transducción generalizada.

Mediante ella se puede transferir cualquier marcador del genóforo del donador, con aproximadamente la misma frecuencia relativa (de ahí el calificativo de generalizada).

La transducción generalizada se produce sólo como consecuencia de infecciones líticas.

El ADN del genomio de la bacteria donadora que es introducido en la partícula transductora suele ir sin acompañamiento de ADN del propio fago. Por ello, a esta peculiar partícula consistente en cápsida del fago que encierra sólo ADN genofórico de la bacteria se la denomina pseudovirión.
Siguiendo con la buena racha de descubrimientos, pocos años más tarde (1956), el mismo Lederberg (esta vez junto con su mujer, y con Morse) hallaron un tipo nuevo de transducción, mientras estaban estudiando el sistema del fago moderado l y su hospedador, E. coli. Este tipo de transducción recibió el nombre de transducción especializada, y sus caracteres distintivos son:

sólo se transfieren marcadores cromosómicos cercanos al sitio de integración del ADN del fago (profago) en la célula lisogénica (p. ej., en el caso de l , los marcadores gal o bio);

se produce únicamente como consecuencia de la inducción de la célula lisogénica por escisión del profago y consiguiente entrada a fase lítica, productora de nuevas partículas de fago;

el ADN genómico de la bacteria transportado por la partícula transductora va unido a ADN del fago;

la célula transductante se suele convertir en lisogénica para el fago correspondiente.


 3.1.3.3 TRANSPOSONES
 Es una secuencia de ADN que puede moverse de manera autosuficiente a diferentes partes del genoma de una célula, un fenómeno conocido como transposición. En este proceso, se pueden causar mutaciones y cambio en la cantidad de ADN del genoma. Anteriormente fueron conocidos como "genes saltarines" y son ejemplos de elementos genéticos móviles.1
El transposón modifica el ADN de sus inmediaciones, ya sea arrastrando un gen codificador de un cromosoma a otro, rompiéndolo por la mitad o haciendo que desaparezca del todo. En algunas especies, la mayor parte del ADN basura (hasta un 50% del total del genoma) corresponde a transposones.
A diferencia de los provirus, los transposones se integran en el ADN celular en lugares bien determinados. Su existencia fue propuesta por Barbara McClintock en el maíz, sin embargo, su existencia no se demostró hasta mucho más tarde en bacterias. Por ello fue laureada con el Premio Nobel en 1983.

                                                       CLASIFICASION

Existe una amplia diversidad de elementos genéticos móviles y pueden ser clasificados en base a su contenido y su estrategia y mecanismo de transposición.
 Según contenido
  • Transposón simple, secuencia de inserción o elemento de inserción (IS): contienen una secuencia central con información para la transposasa, una enzima necesaria para la transposición, y en los extremos una secuencia repetida en orden inverso. Esta secuencia repetida en orden inverso no es necesariamente idéntica, aunque muy parecida. Cuando un transposón simple se integra en un determinado punto del ADN aparece una repetición directa de la secuencia diana (5-12 pb).
  • Transposón compuesto (Tn): contienen un elemento de inserción (IS) en cada extremo en orden directo o inverso y una región central con la transposasa que además suele contener información de otro tipo. Por ejemplo, los factores de transferencia de resistencia (RTF), poseen información en la zona central para resistencia a antibióticos como el cloranfenicol, la kanamicina, la tetraciclina, dándole una ventaja selectiva a las bacterias que lo posean.
 Según estrategia de transposición
  • Clase I o retrotransposones: se mueven en el genoma siendo transcritos a ARN y después en ADN por retrotranscriptasa. A su vez, se clasifican en los de origen retroviral (retrotransposones con LTR) y de origen no retroviral (retrotransposones sin LTR).
  • Clase II o DNA transposones: se mueven directamente de una posición a otra en el genoma usando una transcriptasa para copiar y pegarse en otro locus del mismo.
  • Clase III o MITE, por sus siglas en inglés "Miniature Inverted-repeats Transposable Elements".2
 Según mecanismo de transposición
 
Transposición conservativa: el transposón sale de la sede donadora que queda vacía y se incorpora en una nueva sede (sede receptora). No aumenta el número de copias del transposón en el interior de la célula.
Se expresa la transposasa, y realiza dos cortes de doble cadena a la misma altura en el genoma donante, dejando aislado el transposón. A continuación localiza una secuencia diana (pongamos, ATGCA) en el genoma aceptor, y realiza un corte cohesivo. Tras eso une los extremos a los del transposón aislado, y la ADN Polimerasa de la célula rellena las zonas de cadena sencilla dejadas en la secuencia señal tras el corte cohesivo. Debido a esto, la secuencia señal queda duplicada. Queda, sin embargo, un hueco en el genoma donante, que puede ser letal si no se repara. Realmente, en este caso se habla más de recombinación que de transposición.
http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.pngTransposición no conservativa: En este caso la transposasa realiza un corte cohesivo no solo en la secuencia diana, sino también en el genoma donante, dejando un corte a cada lado del transposón. A continuación integra todo el genoma donante con el aceptor, mediante un curioso mecanismo que forma un intermediario llamado “estructura entrecruzada”. Esta estructura es resuelta por un segundo enzima, la resolvasa, que según cómo lo resuelva dará lugar a una de las siguientes transposicione
·          
    • Transposición no replicativa: el genoma donante se libera, dejando el integrón en el genoma receptor. Al igual que en la transposición conservativa, queda un hueco en el genoma donante, que puede ser letal si no se repara.
    • Transposición replicativa: se produce una replicación desde los extremos 3’ del genoma aceptor, lo que acaba por duplicar el transposón, y produciendo un genoma mixto llamado “cointegrado”. A continuación la resolvasa rompe el cointegrado mediante una recombinación recíproca, que une los extremos del ADN aceptor original (ahora con una de las copias del integrón) y libera el genoma donante de nuevo con su transposón

 3.2 ORGANISMOS EUCARIOTICOS


Se denomina eucariotas a todas las células que tienen su material hereditario fundamentalmente (su información genética) encerrado dentro de una doble membrana, la envoltura nuclear, que delimita un núcleo celular.Las células eucariotas son las que tienen núcleo definido gracias a una membrana nuclear lo contrario que las procariotas que carecen de dicha membrana nuclear por ello el material genetico se encuentra disperso en estas (a lo largo y ancho de su citoplasma) por lo cual se hace poco perceptible en microscopios electronicos, razón por la cual SE HA DIFUNDIDO LA IDEA ERRONEA DE QUE LAS CELULAS PROCARIOTAS NO CUENTAN CON UN NUCLEO siendo esto erroneo precisamente porque las celulas procariotas si tienen nucleo , lo que no tienen es membrana nuclear por lo tanto no tienen un nucleo definido.Se llaman las célulastontas a aquellas que solo tienen medio núcleo y la mitad de su materia genética esta dispersada por toda ella. A los organismos formados por células eucariotas se les denomina eucariontes.
La alternativa a la organización eucariótica de la célula la ofrece la llamada célula procariota. En estas células el material hereditario se encuentra en una región específica denominada nucleoide, no aislada por membranas en el seno del citoplasma. Las células eucariotas no cuentan con un compartimiento alrededor de la membrana plasmática (periplasma), como el que tienen las células procariotas.


 3.2.1.1 HISTONAS

Son proteínas globulares, de baja masa molecular, muy conservadas evolutivamente entre los eucariotas y en algunos procariotas. Forman la cromatina junto con el ADN, sobre la base de unas unidades conocidas como nucleosomas. La cromatina resuelve el problema de restricción de crecimiento de ADN y nucleo, la cromatina esta formada por DNA y proteinas, la principal proteína formadora son las HISTONAS

  HISTORIA


En 1884, Albrecht Kossel reportó el aislamiento de un componente extraído por tratamiento ácido de núcleos de eritrocitos de ganso. Por su aparente similitud fisicoquímica con la peptona lo denominó histonas y sugirió que podría estar unido a los ácidos nucleicos [1]. La palabra histona deriva de la palabra alemana “Histon”, de origen incierto pero probablemente del griego “histanai” o de “histos”. Sólo después de la década de 1990 es que fue reconocido el papel regulador de las histonas, antes eran solamente vistas como matriz para el enrolamiento del material genético (ADN).
                                                               
                                           BIBLIOGRAFIA


 Luque, J., y Herráez, Á. Texto ilustrado de Biología
Molecular e Ingeniería Genética. Ed. Harcourt, 2001.

          Lewin, B. Genes IX, Pearson Education, 2007.
[Genes VII, Marbán, 2001 (2000)].

          Lodish, H., et al. Molecular Cell Biology, 5th ed.,
W. H. Freeman, 2004. [Biología celular y molecular
(5ª ed.). Editorial médica panamericana, 2005 (2004)].

          Alberts, B., et al. Molecular Biology of the Cell,
5th ed., Garland Pub., 2007. [Biología molecular de la
célula (4ª ed.). Omega, 2004 (2002)].

          Watson, J.D., et al. Molecular Biology of the Gene,
6th ed., Benjamin Cummings and Cold Spring Harbor
Laboratory Press,  2008.  [Biología molecular del gen
(5ª ed.) Edit. Médica Panamericana, 2005 (2004)].    













No hay comentarios:

Publicar un comentario